5th Year

Separate Award Chemistry

Practice Paper 2 Anwsers and Comments

Answe	Explain is the com	mand word for including some scientific basis in Layers of C atoms Hexangonal arrangement. Weak bonds / forces between the layers	for your answer. 1 1 1
America	Explain is the com	•	
b)	and use it to explain Examination techn For [4] marks read	show the arrangement of the carbon atoms in why graphite is soft enough to be used in pernique - Points to look for; the question carefully and think where each magram and [2 for the explanation].	ncils. Park will be awarded.
	Explanation	Carbon atoms with 4 covalent bonds. Repeated tetrahedral shape. Lots of strong covalent bonds Need lots of energy to break them	1 1 1 1
a)	to explain why diam Examination techs For [4] marks read [2] for the diam Explain is the common	show the arrangement of the carbon atoms in nond is the hardest substance on Earth. Inique - Points to look for; The question carefully and think where each magram and [2 for the explanation]. In mand word for including some scientific basis	ark will be awarded. for your answer.
		e are both formed from carbon atoms. st substance on Earth and graphite is soft eno	ugh to be used in pencils.
b) Answe	Explain why potass Examination techs For [3] marks you re Explain is the come r - Potassium has a Less attraction to	ven more violently with sulphur. ium reacts more violently than sodium. nique - Points to look for; nust give an answer worthy of three marks. mand word for including some scientific basis is more electron shells / outer electron further fro to the protons in the nucleus / greater sheilding eded to remove the outer electron	m nucleus 1
ii) Answe	melting point than s Examination techs For [2] marks you n Explain is the come er - Sulphide ions h	the bonding involved why like sodium sulphide sodium chloride. nique - Points to look for; nust give an answer worthy of two marks. mand word for including some scientific basis ave twice the charge of chloride ions e has stronger ionic bonds than sodium chloride	for your answer. 1
Answe	Examination technology When drawing ION You draw se You include er - Diagram shows Diagram shows	es diagram to show the bonding present in soci inique IC dot and cross diagrams make sure that; inparate ions that have full outer shells. Ithe charges on the ions that form. Is electrons in outer shell of TWO Na ions Is electrons in outer shell of S (Two from Na) Is every with correct + and 2- charges	1 1 1
, ,			

1. This question is about the elements in Group 1 of the periodic table.

Sodium reacts violently with sulphur to form sodium sulphide, Na₂S.

					fermenta ctions are		or by the cat	talytic hy	⁄dra	tion of et	hene.
	Proces Proces	ss 1 ss 2	C ₂ H _{4 (g)}	C ₆ H	₁₂ O _{6 (s)} H ₂ O _(g)	$\overset{\rightarrow}{\rightarrow}$	2 C ₂ H ₅ OH C ₂ H ₅ OH _(g)	(I) -	+ 2	2 CO _{2 (g)}	1
a)	Exam i Too m	ination any stu	dents ne	ue - l glect	Points to I to answe	r que	or; estions like t sked to write				lines to
	Which er - Pro		s is the e	quat	on for fer	ment	ation?			1	
ii) Answe	Exami State	ination is the co Conditi	techniq i ommand on 1 Te	ue - l word mpe	ature 36-	look f I and 37 °C	or; write a fact.				1
		Conditi	on 2 Ye	east /	Pressure	1 atn	n / absence (of oxyge	n		1
		use for coholic		ınol p	roduced	by fe	mentation.				1
c) i)	Exami State	ination is <i>the c</i> o Conditi	techniq i ommand on 1 Te	ue - l word mpe	Points to I I for recal rature 250	ook f l and - 450	write a fact.				1
ii) Answ e	Give a	use for					e catalytic h		•		1
d)	fermer Exami When	ntation r ination suggest se able to	ather tha techniq is the co	in the u e - l mmai	e catalytic Points to I nd word, ye	hydr look f ou are	uba manufa ation of ethe or; e not expecte lge and unde	ene. ed to knov	w the	e answer,	
Answe		Cuba d					oil to make ar cane a rei		sou	ırce.	1 1
e)	Ethano	ol can b			ack into e						
i) Answe	Exami State	ination	of reacti techniq t ommand	on us ue - <i>l</i>	Points to I	ook f	C ₂ H _{4 (g)} + or; write a fact.	(6)			1
ii)	Exami	ination	techniqu	u e - l	or the rea Points to I I for recal	look f					
Answe					gh temper						2

The most common member of the alcohol homologous series is ethanol.

3.

f) i) Calculate the volume of ethene gas, measure at room temperature and pressure (rtp), that can be formed from 322 kg of ethanol, C₂H₅OH.

(The molar volume of any gas = 24 dm^3 at rtp).

Examination technique - Points to look for;

Calculate is the command word for - Use the numbers given. Show your working.

As with all moles questions you should at least turn mass into moles.

Take care! The mass is in kg and must be converted to g.

As the question has [3] marks you will need to do three things.

Answer – Convert mass in kg to mass in g. 322 kg = 322 000g

RFM Ethanol = 46

Convert mass into moles moles = 322000 / 46 = 7000 moles
Use the balanced equation to find the moles of ethene (1:1 ratio)

Moles ethene formed = 7000

Convert moles to volume of gas = moles $\times 24 = 7000 \times 24 = 168000 \text{ dm}^3$

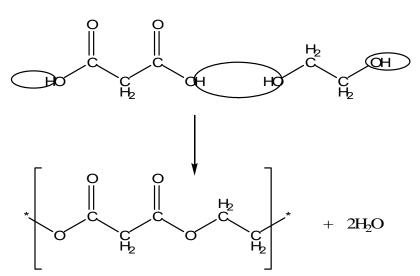
ii) Use the answer from part i) to calculate the percentage yield if 42000 dm³ of ethene is formed from 322 kg of ethanol at rtp.

Examination technique - Points to look for:

% yield cannot be over 100%.

If your calculation gives an answer over 100% you have made an error.

1


g) Ethene can be used to form an important monomer HOCH₂CH₂OH. Draw the polymer formed by the monomers below, showing the structure of the repeat unit.

Examination technique -

When drawing polymers make sure the molecule has continuation lines (outside of the square brackets).

If in doubt use the water lassoing method.

Answer -

Middle link 1 Continuation lines 1 Repeat unit 1

Total 20 marks

- 4. Magnesium is extracted by electrolysis of molten magnesium chloride.
 - a) Write equations for the processes which occur at the anode and cathode.

Examination technique -

Although the question doesn't specifically say write a balanced symbol equation that is what the examiner wants.

Answer - Cathode Mg²+ + 2e⁻ → Mg

Anode 2Cl⁻ - 2e⁻ → Cl₂

Correct formulae of products 1 mark
Correct products at anode + cathode 1 mark
Correct charge on both ions 1 mark
Balancing 1 mark

b) State one difference between the way in which current is conducted through molten magnesium chloride, and the way in which it is conducted through a metal wire.

Examination technique

State is the command word for recall and write a fact.

Answer – when molten conduction is caused by mobile ions carrying charge. 1 In a wire conduction is caused by mobile electrons carrying charge. 1

c) Explain why magnesium cannot be extracted from the electrolysis of magnesium chloride solution.

Examination technique - Points to look for;

Explain is the command word for including some scientific basis for your answer.

Answer - Magnesium is a reactive metal / magnesium ions are too stable
Hydrogen will form at the cathode instead of the magnesium occurs.

d) Calculate the mass of magnesium produced in one hour when a current of 200 amps flows. (One faraday is 96000 coulombs).

Examination technique - Points to look for;

Calculate is the command word for - Use the numbers given. Show your working.

Answer – Charge carried = Q = I x t = $200 \times 60 \times 60 = 720000$ coulombs

Time must be in seconds (not hours)

Moles of electrons flowing = 720000 / 96000 = 7.5Moles of Mg formed = moles of electrons / 2 = 7.5 / 2 = 3.75(mole ratio 1:2 from balanced equation)

Mass Mg = moles x RFM = $3.75 \times 24 = 90$ g

Total 11 marks

- Brine, sodium chloride solution, is an important material for the manufacture of chlorine by electrolysis.
- a) Write equations for the processes which occur at the anode and cathode during the electrolysis of brine.

Examination technique -

Although the question doesn't specifically say write a balanced symbol equation that is what the examiner wants.

Cathode	2H⁺	+	2e ⁻	\rightarrow	H ₂	
Anode	2Cl	-	2e ⁻	\rightarrow	Cl ₂	
		Co	rrect f	ormula	ae of products	1 mark
		Co	rrect p	oroduc	ts at anode + cathode	1 mark
		Co	rrect o	charge	on both ions	1 mark
		Ba	lancin	g		1 mark
	_		Anode 2CI - Co	Anode 2Cl - 2e Correct p	Correct formula Correct produc	Anode 2Cl⁻ - 2e⁻ → Cl₂ Correct formulae of products Correct products at anode + cathode Correct charge on both ions

b) Explain how the electrolysis products are prevented from reacting together in the electrolysis equipment.

Examination technique - Points to look for;

Explain is the command word for including some scientific basis for your answer.

Answer – A membrane is placed between the electrodes.

Prevents hydroxide ions moving to anode (reacting with Cl₂)

c) i) Describe a test to show the presence of bromide ions in a sample of sea water. **Examination technique** - Points to look for;

Explain is the command word for including some scientific basis for your answer.

ii) Sea water can be used to make the brine. It contains many a significant amount of halide ions.

Explain why the test for bromide ions carried out on sea water would not be reliable. **Examination technique** - Points to look for;

Explain is the command word for including some scientific basis for your answer.

Total 10 marks

6. A titration was carried out using 20.00 cm³ samples of dilute sulphuric acid and sodium hydroxide solutions.

The results are shown in the table.

	1st titration	2nd titration	3rd titration
2nd burette reading	15.00	12.30	14.70
1st burette reading	2.30	0.10	2.50
Total volume of	40.70	12.30 - 0.10	14.70 – 2.50
NaOH used	12.70	= 12.20	= 12.20

a) Complete the table.

Examination technique - Points to look for;

Too many students neglect to answer questions like this. As there are no lines to write on they don't realize they have be asked to write the answer above. Make sure your answer is to the same level of accuracy as the other results in the table. i.e. 12.20 and not just 12.2.

2

b) Using the results in the table, explain why it was necessary to carry out three titrations. *Examination technique - Points to look for:*

Explain is the command word for including some scientific basis for your answer.

Answer – Inaccurate results can be ignored. / improves accuracy
Results too far apart / obtain results within 0.1 cm³

1

c) State two pieces of glass apparatus (other than a burette) needed to carry out a titration. *Examination technique*

State is the command word for recall and write a fact.

Answer – pipette and conical flask

2

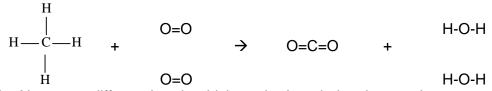
d) The equation for the reaction is

The concentration sodium hydroxide (NaOH) solution used in the titration is 0.2 mol dm⁻³.

Using the results from the 3rd titration, calculate the concentration in mol dm⁻³ of the dilute sulphuric acid.

Examination technique - Points to look for;

Calculate *is the command word for* - Use the numbers given. Show your working. As the question has [4] marks you will need to do four things.


Answer – Converts volumes from cm 3 to dm 3 1 Moles NaOH = Volume (in dm 3) x conc = 12.2 / 1000 x 0.2 = 0.00244 moles 1 Moles H $_2$ SO $_4$ = Moles NaOH / 2 (Mole ratio 1:2) = 0.00244 / 2 = 0.00122 moles 1 Conc H $_2$ SO $_4$ = Moles / Volume (in dm 3) = 0.00122 / 20 /1000 = 0.061 mol dm 3 1

Total 10 marks

7. a) When methane is burnt heat energy is released into the surroundings. What name is given to this type of reaction?

Answer – Exothermic 1

b) The reaction between methane (CH₄) and oxygen (O₂) which takes place during burning produces is represented using the display formulae below.

i) Name two different bonds which are broken during the reaction.

Answer – C-H
O=O

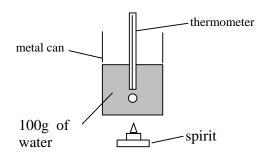
ii) Which two bonds are made during the reaction?

Answer – O-H 1
C=O 1

iii) Calculate the overall energy change for the reaction between methane and oxygen. The bond energies (in kJ mol⁻¹) are C-H: 435, O=O: 497, C=O: 803, H-O: 464) *Examination technique - Points to look for;*

Calculate is the command word for - Use the numbers given. Show your working!

Answer – Bonds Broken = $4 \times C-H + 2 \times O=O$ = $4 \times 435 + 2 \times 497 = 1740 + 994 = 2734$


> Bonds Formed = 2 x C=O + 4 x O-H = 2 x 803 + 4 x 464 = 1606 + 1856 = 3462

Energy change = Broken – Formed = $2734 - 3462 = -728 \text{ kJ mol}^{-1}$

Value 1 Units 1

Total 9 marks

8. Look at the diagram. It shows the apparatus used to calculate the energy released when fuel is burnt.

The table below shows the results when 1.0 g of each fuel is burnt.

fuel	temperature of water at start	temperature of water at end
ethanol	20°C	40°C
paraffin	19°C	58°C
petrol	21°C	42°C

a) Which fuel released the least amount of heat energy?

Answer – Paraffin

1

Explain your answer

Examination technique - Points to look for;

Explain is the command word for including some scientific basis for your answer.

Answer – Highest temperature rise

1

b) Calculate the energy transferred when 1.0 g of ethanol burns. (The specific heat of capacity of water is 4.2 J⁻¹ g⁻¹ °C).

Examination technique - Points to look for;

Calculate is the command word for - Use the numbers given. Show your working!

Answer – Energy = mass of water
$$x \in x \Delta T$$

1

Energy =
$$100 \times 4.2 \times 20 = 8400 \text{ J}$$

Value 1

Units 1

c) Calculate the enthalpy change, in kJ mol⁻¹, when 2.0 g of ethanol, C₂H₅OH, burns. Give your answer the correct sign.

(Relative atomic masses: O = 16; H = 1; C = 12)

Examination technique - Points to look for;

Calculate is the command word for - Use the numbers given. Show your working!

Answer – Enthalpy Change ΔH = Energy / moles

RFM Ethanol = 46

1

Moles of ethanol = 1/46 = 0.0217

1

 $\Delta H = Energy / moles = 8400 / 0.217 = 38710 J mol⁻¹$

 $AH = -387 \text{ kJ mol}^{-1}$

Value 1

Negative value 1

Total 9 marks